A Computer Model of Language Acquisition – Syllable Learning – Based on Hebbian Cell Assemblies and Reinforcement Learning
نویسندگان
چکیده
Investigating language acquisition is one of the most challenging problems in the area of studying language. Syllable learning as a level of language acquisition has a considerable significance since it plays an important role in language acquisition. Because of impossibility of studying language acquisition directly with children, especially in its developmental phases, computer models will be useful in examining language acquisition. In this paper a computer model of early language learning for syllable learning is proposed. It is guided by a conceptual model of syllable learning which is named Directions Into Velocities of Articulators model (DIVA). The computer model uses simple associational and reinforcement learning rules within neural network architecture which are inspired by neuroscience. Our simulation results verify the ability of the proposed computer model in producing phonemes during babbling and early speech. Also, it provides a framework for examining the neural basis of language learning and communication disorders. Keywords—Brain modeling, computer models, language acquisition, reinforcement learning.
منابع مشابه
Optimality Theoretic Account of Acquisition of Consonant Clusters of English Syllables by Persian EFL Learners*
This study accounts for the acquisition of the consonant clusters of English syllable structures both in onset and coda positions by Persian EFL learners. Persian syllable structure is "CV(CC)", composed of one consonant at the initial position and two optional consonants at the final position; whereas English syllable structure is "(CCC)V(CCCC)". Therefore, Persian EFL learners need to resolve...
متن کاملIranian EFL Learners’ Perception of the Efficacy and Affordance of Activity Theory-based Computer Assisted Language Learning in Writing Achievement
Second language writing instruction has been greatly influenced by the growing importance of technology and the recent shift of paradigm from a cognitive to a social orientation in second language acquisition (Lantolf & Thorne, 2006). Therefore, the applications of computer assisted language learning and activity theory have been suggested as a promising framework for writing studies. The prese...
متن کاملThe Comparison of Computer Assisted Teaching and Traditional Explicit Method in Learning / Teaching English Vocabulary.
This review surveys research on second language vocabulary teaching and learning since1999. It first considers the distinction between incidental and intentional vocabulary learning.Although learners certainly acquire word knowledge incidentally while engaged in variouslanguage learning activities, more direct and systematic study of vocabulary is also required.There is a discussion of how word...
متن کاملOperation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملLow-Area/Low-Power CMOS Op-Amps Design Based on Total Optimality Index Using Reinforcement Learning Approach
This paper presents the application of reinforcement learning in automatic analog IC design. In this work, the Multi-Objective approach by Learning Automata is evaluated for accommodating required functionalities and performance specifications considering optimal minimizing of MOSFETs area and power consumption for two famous CMOS op-amps. The results show the ability of the proposed method to ...
متن کامل